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Abstract. A simple finite-size scaling method for two-dimensional surface growth models 
with restricted step heights is proposed. A master equation is written for the time evolution 
of the surface configuration probabilities in which enter model-dependent inter- 
configuration rates. These equations are numerically solved for finite systems of increasing 
sizes and the exponents governing the time evolution of the surface thickness are extracted 
using finite-size scaling analysis. The method is used to study crossovers in realistic models 
for ballistic deposition. 

1. Introduction 

Surface growth processes are phenomena of considerable scientific interest with a 
broad range of practical applications. These studies were pioneered by Vold [l] and 
Eden [2] thirty years ago, and recently re-activated as a result of the general interest 
in non-equilibrium growth such as aggregation [3] and random deposition [4] processes. 
One of the simplest models, called 'ballistic deposition', considers, in its two- 
dimensional version, a basal horizontal line of length Lon which particles are deposited, 
one after another, along randomly positioned vertical trajectories. Particles become 
part of the deposit at their positions of first contact (nearest-neighbour contact when 
on lattice). This model has been extensively studied both on- [5] and off-lattice [6]. 
To analyse the evolution of the surface thickness 6 with time t, the following dynamical 
scaling has been proposed [7]: 

t -L"f(h) .  
The scaling function f ( x )  satisfies f ( x )  + constant when x + CO and f ( x )  - xp ,  with 
p = a / y ,  when x +O. Hence, the scaling behaviour of 6 is different with L for large t ,  
6 -  Lo, than with t for large L, 5- t P .  The most accurate numerical estimates [SI of 
cy, p and y, in two dimensions, are very close to cy =+, p = f and y =$. Realistic 
extensions of this model were considered in which possible surface diffusion [8], 
particle restructuring [6], or reversibility [9] were introduced. When a complete restruc- 
turing (the particles are allowed to slide on the surface until they reach the nearest 
local minimum) or a complete reversibility (the particles are allowed to evaporate or 
stick with symmetric rules) are considered, it is found that the scaling form (1) is still 
valid, but with a different y exponent, y = 2 ,  while cy remains equal to f [6, 91. It is 
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now generally believed that such models are discrete versions of the continuous model 
introduced by Edwards and Wilkinson [IO] ( y = 2) and subsequently modified by 
Kardar, Parisi and Zhang ( KPZ) [ 113 ( y = g) .  

Most of the previous results on discrete models were obtained by means of Monte 
Carlo numerical calculations on large samples. However it has been shown that, when 
considering restricted step heights, the models can be mapped on simple spin models 
[ 5 , 9 ]  so that the numerical methods commonly used for spin or fermion systems can 
be applied. In this paper, we show how the finite-size scaling method, which is a 
standard tool for spin systems [12] can be applied to surface growth problems. The 
idea is to solve exactly the problem for small values of L and try to extrapolate the 
results to the infinite size. Recent results [13] showing that there are fewer finite size 
corrections to scaling in restricted height steps models, yield some confidence in the 
applicability of the finite-size method to these cases. Here, we give some examples of 
applications in two dimensions. Extensions to three dimensions will be presented later. 

2. Principles of the calculation 

In this paper we are always considering growth of a one-dimensional surface on a 
two-dimensional square lattice, with periodic boundary conditions at the edges of a 
strip of L columns, with L even. To reduce the number of surface configurations, we 
only allow steps of one unit length, positive or negative, between the surface heights, 
h, of neighbouring columns. As already noticed [5], a given surface configuration can 
be represented by a set of L spin variables (s, , s2, . . . , s L ) ,  with sI = h, - h,-, = * 1, 
where 1 = 1,2, . . . , L labels the step between columns I - 1 and 1. Periodic boundary 
conditions impose that the total ‘magnetization’, m = Z I s I ,  should be zero so that the 
total number of distinct configurations, R, is given by 

Conventionally, we call a flat surface, a surface which is in configuration (+, -, f, -. . .) 
or (-, +, -, +. . .) with equal probability. 

Starting with a flat surface, our growth models will generate with the same prob- 
abilities those configurations which belong to the same symmetry class. Here a symmetry 
class is defined by the invariance to cyclic permutations and to reflection (in the spin 
picture, the reflection implies also a spin-flip transformation in the same time). Note, 
however, that a global particle-hole symmetry (spin-flip alone) is in general not 
preserved by irreversible growth models. Taking care of the symmetries, it is more 
convenient to group the configurations into basic ‘states’, hereafter labelled by index 
i, each state representing a surface in any of the congfigurations generated from a 
given one using all the symmetries, with the same probability. We call the ‘degeneracy’ 
of the basic state i the number gi of independent configurations it contains. gi is at 
most equal to 2L, otherwise it is necessarily a divisor of 2L and one has: 

N 

C g i = R  
i = l  

(3) 

where N is the total number of basic states. In the following, the state 1, with g ,  = 2, 
corresponds to the flat surface. The example L = 8, where N = 9, is depicted in figure 
1. For larger L values, the search for the basic states and the evaluation of the gi’s is 
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m h i - L " - L n  
I ( 2 )  2 (8 )  3 ( a )  

*A* 
4 (4) 5 (8 )  6 (8) 

r+%fiA 7 (16) 8 (8) 9 (8) 

Figure 1. The N = 9 basic states in the case L = 8. Only one configuration per state is 
shown, the others can be generated using reflection and cyclic permutations. The number 
of independent configurations, g,, for each state i is shown in parenthesis. 

directly done by the computer, using a systematic generation of the different configura- 
tions. In the examples reported below, we went up to L = 18, where N = 1480. 

Knowing the basic states, a growth model can be defined giving the probability 
rates Ti-. ,  to evolve from state i at time t to state j at time t +  1. Then, defining the 
probability p l ( t )  to be in state i at time t ,  the pi 's  should satisfy the following master 
equations: 

In this formula, we have introduced a constant A, which fixes the choice of the time 
unit. These equations allow to calculate the p i (  t ) ' s  at any time t starting from the flat 
surface, i.e. p i ( 0 )  = 1 for i = 1 and p i ( 0 )  = 0 for i >  1. Note that the normalization of 
the pi 's ,  

is automatically perserved by equation (4). Then, knowing the pi's, one can calculate 
the time-evolution of any averaged quantity, such as the square of the surface thickness, 
5, using: 

ti is the i-dependent surface thickness, which is the same in all configurations of the 
basic state i, and which is calculated by: 

1 1 
L l  g = - x  ( h 1 - h ) 2 - -  4 ( 7 a )  

with: 

1 
h =-x hl. 

L /  

Note the difference with the usual definition: in ( 7 a )  we have arbitrarily subtracted 
to ensure 5, = 0 for the flat surface. 



4528 K Uzelac and R Jullien 

Another quantity of interest, which has not been so closely considered in this 
context up to now, is the entropy S ( t ) ,  which can be calculated by: 

In practice, we prefer to use a reduced entropy, s ( t )  

S ( t )  
s ( t ) = -  

log fl 

which is equal to unity at equilibrium, when all surface configurations are equiprobable, 
i.e. when pi = g i / f l .  

3. Definitions of the growth models used 

We have first considered, as a test, a model equivalent to the one already studied by 
Plischke et a1 [9]. This is an Eden-like model in which the only active columns are 
those corresponding to minima (i.e. 1-values such that sI = -1 and SI+, = il) and where, 
per unit time, a new particle can be added to any active column with equal probability. 
When the new particle is added at site Z, the two spins sI and sI+l are flipped (note 
that, as in [5], this corresponds to consider rectangular particles of width 1 and height 
2). When a state i is transformed into a state j ,  the rate r;?, can be calculated as being 
the number of active sites of a configuration belonging to a state i and giving a 
configuration belonging to j. By definition, one has X, r!?, = Y,, where v, is the total 
number of active columns (i.e. the number of minima) in a configuration of state i. 

A symmetric ‘disaggregation’ model can be defined in which the active columns 
are now those corresponding to the maxima and where particles are suppressed in any 
active column with equal probability. The rates r!:), for this disaggregation model 
correspond to the ones of the other after performing a particle-hole (=spin-flip) 
exchange of the states. Then, introducing a concentration c 1 ,  one can consider, as in 
[9], a partially reversible model for which: 

T I - ,  = (1 - c,)rj?,+ c,r::),. (9) 

This model will be called model (1) in the following. The case c, = corresponds to 
the completely reversible case. 

We have also considered another modification of the Eden model described above 
to try to approach closer to realistic ballistic models with restructuring introduced 
earlier [6]. We consider that the new particle can fall in any column, equiprobably: 
when it falls on a minimum (s I  = -sItl  = -1) we proceed as above but when it falls on 
a slope (s, = s/+,) it slides down to reach the nearest minimum, and when it falls on a 
maximum (sI=-sI+,=+l)  it reaches the minimum on the right or on the left with 
equal probability. The rates I?!?, for this ballistic model can be calculated by assigning 
to each interconfiguration channel a weight equal to the width of the ‘attractive basin’ 
of the corresponding active column and then adding the contributions coming from 
different active columns if they lead to the same final state. Here one has X,r;:!, = L. 
To make this more precise, the values of the r;:)’s, together with those of the Tj?,’s, 
in the case L = 8, are listed in table 1. Then, to study the crossover between Eden and 
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Table 1. List of the basic states in the case L =  8 (see figure 1) .  For each state we give its 
spin representation, its degeneracy (g,), its surface thickness ( 6 ,  ), the corresponding state 
after a spin-flip transformation, the list of the corresponding j values which yield to non-zero 
rates r!21 and r::!, and the values for these rates. 

F“” r ( 2 1  
i Spin representation g, 6: s.f. ( i )  j ! + I  1 - 1  

1 
2 

+-+-+-+- 
++--+-+- 

7 

8 
0 
0.1875 

1 
6 

2 
3 
4 
5 
6 
6 
7 
1 
7 
2 
8 
3 
9 
5 

4 
2 
1 
1 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 

8 
6 
2 
2 
6 
8 
8 
4 
4 
5 
3 
6 
2 
8 

3 ++-+--+- 8 0.25 3 

0.25 
0.6875 
0.1875 

4 
5 
6 

++--++-- 
+++---t- 

++-+-+-- 

4 
8 
8 

4 
8 
2 

7 16 0.5 7 +++--+-- 

8 +++-+ --- 8 0.6875 5 

9 ++++---- 8 1.25 9 

ballistic growth, we have introduced a concentration c2 and considered the following 
rates: 

This model is called model ( 2 )  in the following. 
In the calculations that we have performed on these two models, the i-dependent 

quantities such as the t [ ’ s  and the T,,,’s are calculated by the computer during the 
generation of the basic states. Note that the T,,,’s are probability rates and  not 
probabilities so that they can all be multiplied by a constant without changing the 
physics, this arbitrary constant being included in the parameter A. In practice the 
choice for A plays some role in the numerical computation. The convergence of equation 
(4) is better for smaller A values. While the L-dependent results depend slightly on 
A, their convergence to the infinite size does not. In all the calculations reported below, 
with the choice of the T,,,’s adopted above, we have taken A = 0.11 L. 

4. Numerical results and discussion 

In figures 2 ( a )  and 2 ( b ) ,  we give the results for log t( t )  and s ( t )  as a function on log t 
in the Eden case, i.e. for c ,  = c2 = 0. For 5, we recover all the features expected from 
equation ( l ) ,  i.e. a linear behaviour with slope P followed by a L-dependent saturation 
yielding to exponent a. In fact, we recover the saturation value, which has been 
previously calculated analytically in this model [ 9 ] :  

and which gives exactly a = f (when comparing this result with reference [ 9 ] ,  one must 
take care of the f term in equation ( 7 a ) ) .  The analytical calculation is made possible 
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0 

-0.5 

-1.0 1 .o 3.0 

l o d t )  

1.0 

0.7 

0.4 
-2.0 0.0 2.0 

l o d t )  
Figure 2. Plot for log 5 ( a )  and s ( t )  ( b )  as a function of log t in the Eden case (model ( 1 )  
with c, = 0 or model (2)  with c2 = 0). 

because, in this model, the rates insure an equally weighted one-to-one correspondence 
between all the individual configurations so that the solution in the steady-state regime 
of equation (4) is exactly the equilibrium solution p i  = g i / n .  This is also verified on 
the results of figure 2( b )  since s( t )  tends to one in the saturation regime. This allows, 
in this case, to interpret the growth model as a classical relaxion to equilibrium. We 
have observed that this remains true for all concentrations in the case of model (1). 
In the reversible case, c ,  = 0.5, the curves reported in figure 3 exhibit the same qualitative 
behaviour. Except the low time part of .$( t )  which is different and described by another 
/3 exponent, the saturation value is also given by equation (11) and s( r )  tends to one 
when t tends to infinity. 

Such behaviour is no longer observed in model (2). As soon as c2 is different from 
zero the saturation value is different from that of equation (10) and s( t )  no longer 
tends to one. However, we have checked that the L-dependence of is always 
consistent with a = i .  This can be seen in figure 4 and in table 2 where the results for 
model (2),  in the case c2 = 1, are reported. It is worth noticing that in this case (c2 = 1) 
the limiting value for the entropy decreases as L increases, so that the corresponding 
model cannot be viewed as a relaxation process to equilibrium, even in the asymptotic 
limit. 
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0.0 

-0 .5 

-1.0 
0.0 2.0 4.0 

0.4 
-2.0 0.0 2.0  

log(t) 
Figure 3. Plot of log 6 ( a )  and S(I) ( b )  as a function of log r in the reversible case (model 
(1) with c ,  = 0.5). 

To estimate the other exponents p and y, which are related by p = a/ y = 0.51 y we 
could have taken advantage of the low-t part of the [(r)-curves to get p, but we found 
that this method is not reliable in our case where, for the small L-values used, the 
low-t linear region is not sufficiently well developed. We have preferred to use, instead, 
a simple method which consists of estimating directly y but which would have been 
more difficult to use with Monte Carlo data. For a finite system, the relaxation is of 
exponential form, and fitting t( I ) ,  by A + B exp( - t /  T ) ,  one can calculate a L-dependent 
relaxation time T (  L), which, according to ( l ) ,  should behave as Ly for large L. Examples 
of numerical results for T ( L )  are given in tables 2 and 3. Then, as in usual finite-size 
scaling methods [12], by comparing successive sizes, L - 2  and L, one can calculate 
an L-dependent effective exponent: 

log T (  L)/ T (  L - 2) 
10g(L - 2 ) / ( L  -4 )  Y L  = 

(guided by formula ( 1 1 )  we have used L - 2  and L - 4  instead of L and L - 2  in the 
denominator) which should tend to the true y exponent when L tends to infinity. The 
same method can be applied to s(  t )  instead of [( t ) :  we have checked it gives the same 
results. Note that such procedure corresponds to study the L-dependence of the gap 
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-0 

- 1  0- 
-2.0 0.0 2.0 

t 

0.4 v, L=18 , , ll.o 
-3.0 -1.0 

l o d t )  
Figure 4. Plot of log f ( a )  and x(f) ( b j  as  a function of log t in the ballistic case (model  
(2 )  with c, = 1 j .  

Table 2. Numerical results for f:,  s,, T ( L )  in the case of model ( 2 )  for c2 = 1 

8 0.309 0.947 4.396 
10 0.390 0.944 3.123 
12 0.469 0.941 2.287 
14 0.547 0.939 1.73 1 
16 0.623 0.937 1.349 
18 0.700 0.935 1.078 

between the two lowest eigenstates of the evolution matrix 

This idea was already used to find an exact solution of a similar model [14]. 
Our  results for y are given in figures 5 (  a )  and  ( b ) ,  for model (1)  and  (2) respecitvely, 

where yL has been plotted as a function of 1/( L - 3) for different c ,  and c2 values. For 
model (1) we only report results for c ,  ranging from 0 to 0.5 since the results are the 
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'L 

1.5 

Table 3. Numerical results for T( L)  in the case of model (1) for c, = O  and C, =0.5. 

. 

L T ( L )  for c, = 0 T ( L )  for c, = O S  

2.0 

1.5 

8 0.937 
10 0.640 
12 0.471 
14 0.364 
16 0.292 
18 0.241 

- 

' 

0.757 
0.469 
0.3 18 
0.229 
0.173 
0.135 

Y 2.0 r 
* c=0.5  
* 0.4 
+ 0.3 
* 0.2 
+ 0.1 
9 0  

1.01 ' ' ' ' ' ' 
0 0.05 0.10 0.15 

li(L.3) 

-m- c = l  
* 0.2 
* 0.1 - 0.05 
+ 0.02 
0 0  

1.0' . ' ' ' ' 
0 0.05 0.10 0.15 

l/(L-3) 
Figure 5. Plot of y L  as a function of 1 / (  L - 3), for different c-values. ( a )  and ( b )  correspond 
to model (1) and model ( 2 ) ,  and the c-values correspond to c ,  and c Z r  respectively. 

same by changing c1 in 1 - c ,  . While the curve for c, = 0 converges to y = 1.5, the curve 
for c1 = O S  converges to y = 2 .  For all intermediate c ,  values, one observes a clear 
negative curvature, consistent with a convergence to y = 1.5. This is in agreement with 
the conclusion of Plishke et a1 [7]  that the reversible model is an  unstable fixed point. 

In the case of model (2)  the results are consistent with y = 2 for c2 = 1.  This is in 
good agreement with what is known on the ballistic model with complete restructuring 
[ 6 ] .  However the crossover is the opposite of the one observed in figure 5 ( a ) .  While 
y L  converges to y = 1.5 for c2 = 0, it seems to converge to y = 2 as soon as ct is slightly 
increased above c2 = 0. Thus, it appears that the y = 2 fixed point is reached as soon 
as there is some partial restructuring. This last result appears to be in conflict with 
theoretical predictions [ 17, 181 based on the renormalization group analysis of the 
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1.0 

1 .o 

~~ 

0 0.2 0.4 

I I I 

0 0.1 0.2 

t/(L-2)2 

L 1 I 

0 0.01 0.02 

t/L2 
Figure 6. Scaled curves for the surface thickness. Cases ( a ) ,  ( b )  and ( c )  correspond to 
figures 2, 3,  4, i.e. the Eden, reversible and ballistic case, respectively. 
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KPZ equation [ 113, for which the y = 2 fixed point should be always unstable. However, 
we have already observed that introducing one step surface diffusion in the ballistic 
model built on lattice gives the same result ( y = 2) as a complete restructuring (the 
ballistic model with one step restructuring is equivalent to the independent column 
model with one step restructuring studied by Family [ 81). This apparent discrepancy 
between lattice models and the continuous KPZ equation needs further attention. It 
might be that infinitesimally small restructuring can never be tuned on lattice or that 
our parameter c2 does not vary continuously with the parameters of the K P Z  equation. 
It is also quite possible that the crossover expected from theory occurs for length scales 
longer than those analysed here. 

Knowing both a and y it is possible to draw the t ( t )  curves under a scaled form 
according to (1). This has been done in figure 6 in the three limiting cases, Eden, 
reversible and ballistic (with restructuring), which correspond to figures 2, 3, 4, 
respectively. In the two first cases, since we know the exact formula (11) for t5 ,  in 
which appears L-2, we have plotted t2/,$$ as a function of t / (L-2)Y.  In the third 
case, since there is no reason to use L -2 instead of L, we have plotted ('1 L as a 
function of t /  Ly .  These plots allow us to appreciate the finite size corrections to scaling. 
These corrections increase when going from the first to the third case. This is consistent 
with the increasing slopes for the corresponding effective y L  exponents observed in 
figure 5. We were unable to do the same for the entropy and we did not find a reasonable 
scaling form, especially in the ballistic case, where the L-dependence of s, cannot be 
determined. 

5. Conclusion 

In this paper, we have presented a simple finite-size scaling method well adapted to 
investigate surface growth models with restricted step heights. The method can simply 
be extended to other two-dimensional studies such as the effect of a tilted baseline 
[ 151, by considering states with finite magnetization, or to the Kim-Kosterlitz case 
[13], by considering spins 1 instead of spins f etc.. . . We also intend to extend the 
method to three dimensions. Even if this extension will be much more computer time 
consuming, we think it will be very interesting to compare the results with Monte Carlo 
data, especially after the recent numerical evidences that crossovers of the type studied 
here can become true phase transitions in three dimensions [16]. 

Acknowledgments 

We thank Y P Pellegrini, L Sander and P Meakin for discussions. Numerical calculations 
were done at CIRCE (Centre Inter-RCgional de Calcul Electronique), Orsay, France. 

References 

[ l ]  Vold M J 1959 J.  Colloid and Inr. Science 14 168; 1959 J .  Phys. Chem. 63 1608; 1960 J.  Phys. Chem. 64 

[2] Eden M 1961 h o c .  Fourth Berkeley Symp. on Math. Slat. and Prob. vol IV, ed F Neyman (Berkeley, 

[3] Family F and Landau D P 1984 Kinetics ofAggregarion and Gelarion (Amsterdam: North-Holland) 
Stanley H E and Ostrowski N 1985 On Growth and Forms, a Modern View (Deventer: Kluwer) 
Jullien R and Botet R 1987 Aggregation and Fracral Aggregares (Singapore: World Scientific) 

1616 

CA: University of California Press) 



4536 K Uzelac and R Jullien 

[4] Meakin P 1987 C R C  Crit .  Rev. Solid Sfare Mat. Sei. 13 143 
[5] Meakin P, Ramanlal P, Sander L M and Ball R C 1986 Phys. Rec. A 34 5081 
[6] Meakin P and Jullien R 1987 J .  Physique 48 1651 
[7] Family F and Vicsek T 1985 J.  Phys. A: Math.  Gen.  I8 L75 
[8] Family F 1986 J.  Phys. A: Math. Gen.  19 L441 
[9] Plischke M, Racz Z and Liu D 1987 Phys. Rev. B 35 3485 

[lo] Edwards S F and Wilkinson D R 1982 Proc. R .  Soc. A 381 17 
[ I l l  Kardar M, Parisi G and Zhang Y C 1986 Phys. Rec. Lett. 56 889 
[ 121 Barber M N 1983 Phase Transitions and Critical Phenomena vo1 8, ed C Domb and J L Lebowitz (New 

[13] Kim J M and Kosterlitz J M 1989 Phys. Rev. Lett .  62 2289 
[14] Dhar D 1987 Phase Transitions 9 51 
[15] Krug J 1989 J. Phys. A: Math. Gen.  22 L769 
[16] Amar J G and Family F 1990 Phys. Rev. Lett. 64 543 

York: Academic). 

Yan H,  Kessler D and Sander L M 1990 Phys. Rev. Lett. 64 926 
Pellegrini Y P and Jullien R 1990 Phys. Rev. Lett. 64 1745 

[I71 Kardar M and Zhang Y C 1986 Phys. Rev. Lett. 58 2087 1987 
[I81 Halpin-Healy T 1989 Phys. Rev. Lett. 62 442 


